您現(xiàn)在的位置:首頁(yè) > 背景提升 > 2024暑期iHUB·上海:商業(yè)分析專題: 數(shù)據(jù)分析與統(tǒng)計(jì)方法在流程優(yōu)化及供應(yīng)需求中的應(yīng)用
驗(yàn)證碼

獲取驗(yàn)證碼

2024暑期iHUB·上海:商業(yè)分析專題: 數(shù)據(jù)分析與統(tǒng)計(jì)方法在流程優(yōu)化及供應(yīng)需求中的應(yīng)用

專業(yè):商業(yè)

項(xiàng)目類型:海外導(dǎo)師線下項(xiàng)目

開始時(shí)間:2024年07月20日

是否可加論文:是

項(xiàng)目周期:1周在線科研+14天面授科研+5周在線論文指導(dǎo)

語(yǔ)言:英文

有無(wú)剩余名額:名額充足

建議學(xué)生年級(jí):大學(xué)生 高中生

是否必需面試:否

適合專業(yè):商業(yè)分析金融學(xué)財(cái)務(wù)管理數(shù)據(jù)分析創(chuàng)業(yè)創(chuàng)新風(fēng)險(xiǎn)管理數(shù)學(xué)商業(yè)統(tǒng)計(jì)公司管理商業(yè)決策

地點(diǎn):上海圣華紫竹學(xué)院

建議選修:高等數(shù)學(xué)微積分與應(yīng)用

建議具備的基礎(chǔ):商業(yè)分析、風(fēng)險(xiǎn)管理、管理學(xué)、統(tǒng)計(jì)學(xué),應(yīng)用數(shù)學(xué)等專業(yè)或者希望修讀相關(guān)專業(yè)的學(xué)生;具有代數(shù)及微積分基礎(chǔ)的學(xué)生優(yōu)先

產(chǎn)出:1周在線科研+14天面授科研+5周在線論文指導(dǎo) 項(xiàng)目報(bào)告 優(yōu)秀學(xué)員獲主導(dǎo)師Reference Letter EI/CPCI/Scopus/ProQuest/Crossref/EBSCO或同等級(jí)別索引國(guó)際會(huì)議全文投遞與發(fā)表指導(dǎo)(可用于申請(qǐng)) 結(jié)業(yè)證書 成績(jī)單

項(xiàng)目背景:數(shù)據(jù)具有固有的不確定性,例如:人的感情;天氣形勢(shì);可再生資源;以及未來(lái)預(yù)測(cè)。盡管存在不確定性,數(shù)據(jù)仍然包含寶貴的信息。從本質(zhì)來(lái)講,人類不喜歡不確定性,但簡(jiǎn)單地忽略這一點(diǎn)可能產(chǎn)生比不確定性本身更多的問題。 在大數(shù)據(jù)時(shí)代,高管需要以不同的方式處理不確定性的各個(gè)維度。他們需要承認(rèn)、接受這一點(diǎn),并確定如何充分利用不確定的數(shù)據(jù)。大數(shù)據(jù)的重要作用之一便是可以作為客戶和企業(yè)之間的雙向通道。例如,特斯拉電動(dòng)車在駕駛和停車時(shí)產(chǎn)生大量數(shù)據(jù)。在行駛中,司機(jī)持續(xù)地更新車輛的加速度、剎車、電池充電和位置信息。數(shù)據(jù)也傳回工程師以了解客戶的駕駛習(xí)慣,用于優(yōu)化汽車性能。本項(xiàng)目旨在探索如果獲取更多的不同種類的數(shù)據(jù),以及培養(yǎng)數(shù)據(jù)分析能力,包括軟件工具和使用這些數(shù)據(jù)分析工具的必備技能。 Managers encounter data daily and regularly base their decisions on it. In the published book, “Competing on Analytics: The New Science of Winning”by Harvard Business School Press, Thomas H. Davenport and Jeanne G. Harris reveal how organizations such as Amazon.com, Wal-Mart, Netflix, Capital One, and others use analytics as a tool for competitive differentiation and advantage. Business analytics is the sensible use of data and quantitative models for informing decisions and actions. Business Analytic can help companies make better decisions by showing present and historical data within their business context. Analysts can leverage business analytic to provide performance and competitor benchmarks to make the organization run smoother and more efficiently. Analysts can also more easily spot market trends to increase sales or revenue. Used effectively, the right data can help with anything from compliance to hiring efforts.

項(xiàng)目介紹:商業(yè)數(shù)據(jù)分析是企業(yè)運(yùn)營(yíng)中高效管理的重要技能。通過對(duì)企業(yè)的銷售、利潤(rùn)和其他關(guān)鍵指標(biāo)的變化趨勢(shì)建模,可以對(duì)這些指標(biāo)的未來(lái)進(jìn)行有效的科學(xué)預(yù)測(cè)。通過數(shù)據(jù)分析和建模了解可能發(fā)生的季節(jié)性、年度或任何規(guī)模的變化,可以讓企業(yè)經(jīng)營(yíng)有備無(wú)患。該項(xiàng)目?jī)?nèi)容為商業(yè)分析核心知識(shí)與技能,包括統(tǒng)計(jì)分析、概率分布、決策分析、抽樣分布、置信區(qū)間、假設(shè)檢驗(yàn)、回歸模型等。其中,概率模型側(cè)重不確定性和風(fēng)險(xiǎn)處理;統(tǒng)計(jì)分析側(cè)重?cái)?shù)據(jù)呈現(xiàn)以及如何通過數(shù)據(jù)獲取有用信息和有效推論;優(yōu)化模型和決策分析側(cè)重運(yùn)用數(shù)據(jù)進(jìn)行決策。學(xué)生將在項(xiàng)目中運(yùn)用Excel或Mintab進(jìn)行商業(yè)數(shù)據(jù)分析,在項(xiàng)目結(jié)束時(shí)提交報(bào)告,進(jìn)行成果展示。

Business Analytics and modeling are important skills for effective managerial decision-making in business and industry. Advances in technology (computers, scanners, cell phones) have made a significant amount of data available to managers. Furthermore, business analytics provides a way for businesses to plan for the future. By modeling the trends in a business's sales, profits, and other key metrics, these indicators can be projected into the future. Understanding the changes that are likely to occur seasonally, annually, or on any scale allows businesses to better prepare. The techniques learned in this program will help students infer data and as such make better-informed decisions. The program covers statistical analysis, probability distributions, sampling distributions, confidence intervals, hypothesis testing, and regression models. Probability models provide tools to handle uncertainty and risk. Statistical analysis focuses on the presentation of data and techniques to draw useful and valid inferences from data.

項(xiàng)目大綱:描述性統(tǒng)計(jì)與離散概率分布 Descriptive statistics; discrete probability distributions 離散與連續(xù)概率分布;回報(bào)/風(fēng)險(xiǎn)分析 Discrete and continuous probability distributions; return/risk analysis 抽樣分布與置信區(qū)間估計(jì) Sampling distributions; confidence interval estimation 假設(shè)檢驗(yàn) Hypothesis testing about population mean and proportion 簡(jiǎn)單回歸模型與多元回歸模型 Simple regression models; multiple regression models 案例分析:供應(yīng)鏈優(yōu)化及戰(zhàn)略制定 Case Study 項(xiàng)目回顧與成果展示 Program Review and Presentation 論文輔導(dǎo) Project Deliverables Tutoring

更多課程分類
驗(yàn)證碼

獲取驗(yàn)證碼