您現(xiàn)在的位置:首頁 > 背景提升 > 商業(yè)分析專題: “數(shù)據(jù)為王”時代下的商業(yè)決策優(yōu)化---基于Python的用戶價值估算及業(yè)務(wù)風險預警的研究與實踐【大學組】
驗證碼

獲取驗證碼

商業(yè)分析專題: “數(shù)據(jù)為王”時代下的商業(yè)決策優(yōu)化---基于Python的用戶價值估算及業(yè)務(wù)風險預警的研究與實踐【大學組】

專業(yè):商業(yè)

項目類型:國外小組科研

開始時間:2024年12月21日

是否可加論文:是

項目周期:7周在線小組科研學習+5周不限時論文指導學習

語言:英文

有無剩余名額:名額充足

建議學生年級:大學生

是否必需面試:否

適合專業(yè):軟件工程商業(yè)分析機器學習金融學數(shù)據(jù)科學數(shù)據(jù)分析人工智能風險管理商業(yè)統(tǒng)計編程語言

地點:復旦大學·生命科學創(chuàng)新實踐基地

建議選修:Python數(shù)據(jù)處理及其數(shù)學原理

建議具備的基礎(chǔ):對商業(yè)分析、商業(yè)統(tǒng)計、數(shù)據(jù)科學、數(shù)據(jù)處理、機器學習、深度學習、信息安全等專業(yè)和課題感興趣,相關(guān)專業(yè)或希望在相關(guān)領(lǐng)域深入學習的學生 具備Python基礎(chǔ)知識,數(shù)學邏輯良好的學生優(yōu)先

產(chǎn)出:7周在線小組科研學習+5周不限時論文指導學習 共125課時 項目報告 優(yōu)秀學員獲主導師Reference Letter EI/CPCI/Scopus/ProQuest/Crossref/EBSCO或同等級別索引國際會議全文投遞與發(fā)表指導(可用于申請) 結(jié)業(yè)證書 成績單

項目背景:如何運??數(shù)據(jù)及數(shù)據(jù)分析來形成預測模型已經(jīng)成為?個決策者在當今互聯(lián)?經(jīng)濟的商業(yè)世界中必不可少的研究技能。以數(shù)理編程為?段,從數(shù)據(jù)分析出發(fā),以決策優(yōu)化來創(chuàng)造價值。比如,抖音快手會根據(jù)觀看視頻的數(shù)據(jù),收集觀眾的喜好,推薦不同的短視頻;網(wǎng)易云會統(tǒng)計聽眾的聽歌歷史,為不同的人量身定制歌單。商業(yè)數(shù)據(jù)分析的本質(zhì)是要為企業(yè)解決實際問題,既要了解市場,又要懂得分析方法,最重要的是能落地。項目將帶領(lǐng)學生學習機器學習算法的基本問題和步驟、了解其在數(shù)據(jù)挖掘領(lǐng)域的應(yīng)用,并充分利用所學知識解決客戶細分及反欺詐等實際問題。 In the world of Big Data, data has become a strategic resource that enterprises and society focus on. How can we use mature statistical analysis and data mining techniques to conduct efficient business analysis to maximize benefits? Databases provide data management techniques, while machine learning and statistics provide data analysis techniques. The project will lead students to learn machine learning algorithms, understand its application in the field of data mining, and solve practical problems such as customer segmentation and anti-fraud.

項目介紹:機器學習是使用統(tǒng)計建模算法來解決大型數(shù)據(jù)集的實際定量問題,并用于研究和實際解決常見或不尋常的商業(yè)問題。 本項目將帶領(lǐng)學生學習監(jiān)督學習與無監(jiān)督學習、過度擬合、訓練數(shù)據(jù)、測試數(shù)據(jù)、驗證數(shù)據(jù)、線性回歸和邏輯回歸、決策樹算法、提升樹算法、隨機森林、神經(jīng)網(wǎng)絡(luò)、聚類算法、特征選擇、正則化、主成分分析、擬合優(yōu)度度量、分類變量編碼、模糊匹配等機器學習基礎(chǔ)知識及數(shù)據(jù)挖掘經(jīng)典算法,項目結(jié)束時提交項目報告,進行成果展示。

Machine Learning is the use of statistical modeling algorithms to solve practical quantitative problems around large data sets. The mainline practices are building either supervised or unsupervised algorithms that can be used for data analysis, predictions, and forecasts. The main processes in machine learning are data exploration, analysis, cleaning, building expert variables, applying linear or nonlinear fitting algorithms, and evaluation of results. There are many kinds of statistical and machine learning algorithms including linear and logistic regressions, decision trees, boosted trees, random forests, neural nets, support vector machines, k nearest neighbors, Bayesian networks, and clustering algorithms.

項目大綱:監(jiān)督學習與無監(jiān)督學習、過度擬合、數(shù)據(jù)檢測、線性回歸 ML modeling basics; training/testing/validating data sets; linear regression 非線性機器學習算法 Nonlinear ML algorithms 聚類、特征選擇、正則化、主成分分析、擬合優(yōu)度度量 Clustering, curse of dimensionality, feature selection, regularization, PCA, model measures of goodness 數(shù)據(jù)準備及預處理 Data preparation 機器學習、數(shù)據(jù)挖掘在客戶細分及反欺詐等實際問題中的運用 ML applications, such as in marketing segmentation, fraud score 項目回顧與成果展示 Program Review and Presentation 論文輔導 Project Deliverables Tutoring

更多課程分類
驗證碼

獲取驗證碼